Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3114, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600082

ABSTRACT

The presence of autoantibodies is a defining feature of many autoimmune diseases. The number of unique autoantibody clones is conceivably limited by immune tolerance mechanisms, but unknown due to limitations of the currently applied technologies. Here, we introduce an autoantigen-specific liquid chromatography-mass spectrometry-based IgG1 Fab profiling approach using the anti-citrullinated protein antibody (ACPA) repertoire in rheumatoid arthritis (RA) as an example. We show that each patient harbors a unique and diverse ACPA IgG1 repertoire dominated by only a few antibody clones. In contrast to the total plasma IgG1 antibody repertoire, the ACPA IgG1 sub-repertoire is characterised by an expansion of antibodies that harbor one, two or even more Fab glycans, and different glycovariants of the same clone can be detected. Together, our data indicate that the autoantibody response in a prominent human autoimmune disease is complex, unique to each patient and dominated by a relatively low number of clones.


Subject(s)
Arthritis, Rheumatoid , Autoantibodies , Humans , Anti-Citrullinated Protein Antibodies , Immunoglobulin G , Autoantigens
2.
Mol Cell Proteomics ; 23(1): 100690, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065436

ABSTRACT

Serum proteomics has matured and is now able to monitor hundreds of proteins quantitatively in large cohorts of patients. However, the fine characteristics of some of the most dominant proteins in serum, the immunoglobulins, are in these studies often ignored, due to their vast, and highly personalized, diversity in sequences. Here, we focus exclusively on these personalized features in the serum proteome and distinctively chose to study individual samples from a low diversity population: elderly donors infected by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). By using mass spectrometry-based methods, immunoglobulin IgG1 and IgA1 clonal repertoires were monitored quantitatively and longitudinally in more than 50 individual serum samples obtained from 17 Corona virus disease 2019 patients admitted to intensive care units. These clonal profiles were used to examine how each patient reacted to a severe SARS-CoV-2 infection. All 17 donors revealed unique polyclonal repertoires and substantial changes over time, with several new clones appearing following the infection, in a few cases leading to a few, very high, abundant clones dominating their repertoire. Several of these clones were de novo sequenced through combinations of top-down, middle-down, and bottom-up proteomics approaches. This revealed sequence features in line with sequences deposited in the SARS-CoV-specific antibody database. In other patients, the serological Ig profiles revealed the treatment with tocilizumab, that subsequently dominated their serological IgG1 repertoire. Tocilizumab clearance could be monitored, and a half-life of approximately 6 days was established. Overall, our longitudinal monitoring of IgG1 and IgA1 repertoires of individual donors reveals that antibody responses are highly personalized traits of each patient, affected by the disease and the chosen clinical treatment. The impact of these observations argues for a more personalized and longitudinal approach in patients' diagnostics, both in serum proteomics as well as in monitoring immune responses.


Subject(s)
COVID-19 , Humans , Aged , SARS-CoV-2 , Proteome , Immunoglobulin G , Immunoglobulin A , Antibodies, Viral
3.
Anal Chem ; 96(1): 23-27, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38105593

ABSTRACT

Human antibodies are heterogeneous molecules primarily due to clonal sequence variations. Analytical techniques to assess antibody levels quantitatively, such as ELISA, lack the power to resolve abundances at the clonal level. Recently, we introduced an LC-MS-based approach that can distinguish and quantify antibody clones using the mass and retention time of their corresponding Fab-fragments. We used specific hinge-cleaving protease IgdE (FabALACTICA) to release the Fab-fragments from the constant Fc region of the antibody. Here, we explore an alternative IgG1 hinge-cleaving protease, BdpK (FabDELLO), and compare it directly to IgdE for use in IgG1 repertoire profiling. We used IgdE and BdpK in parallel to digest all IgG1s from the same set of plasma samples. Both proteases cleave IgG1 specifically in the hinge, albeit via different mechanisms and at two distinct cleavage sites. Notwithstanding these differences, the Fab fragments generated by IgdE or BdpK produced highly similar clonal repertoires. However, IgdE required ∼16 h of incubation to digest plasma IgG1s, while BdpK required ∼2 h. We authenticated the similarity of the clones by top-down proteomics using electron transfer dissociation. We conclude that BdpK performs very well in digesting polyclonal plasma IgG1s and that neither BdpK nor IgdE displays detectable biases in cleaving IgG1s. We anticipate that BdpK may emerge as the preferred protease for IgG1 hinge-digestion because it offers a shorter digestion time compared to IgdE, an equally specific digestion site, and no bias against any IgG1 present in plasma.


Subject(s)
Immunoglobulin G , Peptide Hydrolases , Humans , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid , Tandem Mass Spectrometry , Endopeptidases , Immunoglobulin Fab Fragments , Clone Cells
4.
Front Nutr ; 10: 1305086, 2023.
Article in English | MEDLINE | ID: mdl-38288064

ABSTRACT

Introduction: Upon vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) humans will start to produce antibodies targeting virus specific antigens that will end up in circulation. In lactating women such antibodies will also end up in breastmilk, primarily in the form of secretory immunoglobulin A1 (SIgA1), the most abundant immunoglobulin (Ig) in human milk. Here we set out to investigate the SIgA1 clonal repertoire response to repeated SARS-CoV-2 vaccination, using a LC-MS fragment antigen-binding (Fab) clonal profiling approach. Methods: We analyzed the breastmilk of six donors from a larger cohort of 109 lactating mothers who received one of three commonly used SARS-CoV-2 vaccines. We quantitatively monitored the SIgA1 Fab clonal profile over 16 timepoints, from just prior to the first vaccination until 15 days after the second vaccination. Results: In all donors, we detected a population of 89-191 vaccine induced clones. These populations were unique to each donor and heterogeneous with respect to individual clonal concentrations, total clonal titer, and population size. The vaccine induced clones were dominated by persistent clones (68%) which came up after the first vaccination and were retained or reoccurred after the second vaccination. However, we also observe transient SIgA1 clones (16%) which dissipated before the second vaccination, and vaccine induced clones which uniquely emerged only after the second vaccination (16%). These distinct populations were observed in all analyzed donors, regardless of the administered vaccine. Discussion: Our findings suggest that while individual donors have highly unique human milk SIgA1 clonal profiles and a highly personalized SIgA1 response to SARS-CoV-2 vaccination, there are also commonalities in vaccine induced responses.

5.
Nat Commun ; 13(1): 6103, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36243713

ABSTRACT

Existing assays to measure antibody cross-reactivity against different SARS-CoV-2 spike (S) protein variants lack the discriminatory power to provide insights at the level of individual clones. Using a mass spectrometry-based approach we are able to monitor individual donors' IgG1 clonal responses following a SARS-CoV-2 infection. We monitor the plasma clonal IgG1 profiles of 8 donors who had experienced an infection by either the wild type Wuhan Hu-1 virus or one of 3 VOCs (Alpha, Beta and Gamma). In these donors we chart the full plasma IgG1 repertoires as well as the IgG1 repertoires targeting the SARS-CoV-2 spike protein trimer VOC antigens. The plasma of each donor contains numerous anti-spike IgG1 antibodies, accounting for <0.1% up to almost 10% of all IgG1s. Some of these antibodies are VOC-specific whereas others do recognize multiple or even all VOCs. We show that in these polyclonal responses, each clone exhibits a distinct cross-reactivity and also distinct virus neutralization capacity. These observations support the need for a more personalized look at the antibody clonal responses to infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral , Humans , Immunoglobulin G , Spike Glycoprotein, Coronavirus
6.
Front Immunol ; 12: 789748, 2021.
Article in English | MEDLINE | ID: mdl-34938298

ABSTRACT

Recently, a mass spectrometry-based approach was introduced to directly assess the IgG1 immunoglobulin clonal repertoires in plasma. Here we expanded upon this approach by describing a mass spectrometry-based technique to assess specifically the clonal repertoire of another important class of immunoglobulin molecules, IgA1, and show it is efficiently and robustly applicable to either milk or plasma samples. Focusing on two individual healthy donors, whose milk was sampled longitudinally during the first 16 weeks of lactation, we demonstrate that the total repertoire of milk sIgA1 is dominated by only 50-500 clones, even though the human body theoretically can generate several orders of magnitude more clones. We show that in each donor the sIgA1 repertoire only changes marginally and quite gradually over the monitored 16-week period of lactation. Furthermore, the observed overlap in clonal repertoires between the two individual donors is close to non-existent. Mothers provide protection to their newborn infants directly by the transfer of antibodies via breastfeeding. The approach introduced here, can be used to visualize the clonal repertoire transferred from mother to infant and to detect changes in-time in that repertoire adapting to changes in maternal physiology.


Subject(s)
Immunoglobulin A, Secretory/immunology , Mass Spectrometry , Milk, Human/immunology , Proteome/immunology , Proteomics , Breast Milk Expression , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Colostrum/immunology , Colostrum/metabolism , Female , Humans , Immunoglobulin A, Secretory/blood , Lactation , Milk, Human/metabolism
7.
Cell Syst ; 12(12): 1131-1143.e5, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34613904

ABSTRACT

Although humans can produce billions of IgG1 variants through recombination and hypermutation, the diversity of IgG1 clones circulating in human blood plasma has largely eluded direct characterization. Here, we combined several mass-spectrometry-based approaches to reveal that the circulating IgG1 repertoire in human plasma is dominated by a limited number of clones in healthy donors and septic patients. We observe that each individual donor exhibits a unique serological IgG1 repertoire, which remains stable over time but can adapt rapidly to changes in physiology. We introduce an integrative protein- and peptide-centric approach to obtain and validate a full sequence of an individual plasma IgG1 clone de novo. This IgG1 clone emerged at the onset of a septic episode and exhibited a high mutation rate (13%) compared with the closest matching germline DNA sequence, highlighting the importance of de novo sequencing at the protein level. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
DNA , Immunoglobulin G , Humans , Immunoglobulin G/genetics , Mass Spectrometry , Peptides , Plasma
8.
Protein Expr Purif ; 174: 105677, 2020 10.
Article in English | MEDLINE | ID: mdl-32461183

ABSTRACT

INTRODUCTION: Assessing the specificity of protein binders is an essential first step in protein biomarker assay development. Affimers are novel protein binders and can potentially replace antibodies in multiple protein capture-based assays. Affimers are selected for their high specificity against the target protein and have benefits over antibodies like batch-to-batch reproducibility and are stable across a wide range of chemical conditions. Here we mimicked a typical initial screening of affimers and commercially available monoclonal antibodies against two non-related proteins, IL-37b and proinsulin, to assess the potential of affimers as alternative to antibodies. METHODS: Binding specificity of anti-IL-37b and anti-proinsulin affimers and antibodies was investigated via magnetic bead-based capture of their recombinant protein targets in human plasma. Captured proteins were analyzed using SDS-PAGE, Coomassie blue staining, Western blotting and LC-MS/MS-based proteomics. RESULTS: All affimers and antibodies were able to bind their target protein in human plasma. Gel and LC-MS/MS analysis showed that both affimer and antibody-based captures resulted in co-purified background proteins. However, affimer-based captures showed the highest relative enrichment of IL-37b and proinsulin. CONCLUSIONS: For both proteins tested, affimers show higher specificity in purifying their target proteins from human plasma compared to monoclonal antibodies. These results indicate that affimers are promising antibody-replacement tools for protein biomarker assay development.


Subject(s)
Biomimetic Materials/chemistry , Interleukin-1 , Proinsulin , Biomarkers , Humans , Interleukin-1/antagonists & inhibitors , Interleukin-1/chemistry , Proinsulin/antagonists & inhibitors , Proinsulin/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...